Fast Search Algorithm for Sequences of
Hierarchically Structured Data

Masaki Murata', Masao Utiyama', Toshiyuki Kanamaru!'2, and
Hitoshi Isahara!

! National Institute of Information and Communications Technology,
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan,
{murata,mutiyama,isahara}@nict.go. jp,

WWW home page: http://wuw.nict.go.jp/jt/a132/members/murata/
2 Kyoto University,

Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan,
kanamaru@hi.h.kyoto-u.ac. jp

Abstract. We developed an algorithm for quickly searching sequences of
hierarchically structured data, such as tagged corpora where each word
includes information on its part of speech (POS) and minor POS and
the word itself. Using our method, we first make a data item where each
data item in a lower level is surrounded by two data items in a higher
level. We then connect these data items to make a long string and store
the string in a databasc. We use suffix arrays to query the database.
Our experiments showed that our method was 194 times faster than
a conventional method at fastest and 24 times faster on average. Our
method can be used for other kinds of hierarchically structured data,
such as Web applications. Methods that can be used on such data are in
high demand. For example, our method can be used to retrieve Web text
that includes hierarchical information of low, middle, and high semantic
levels. If we use our method for such Web text, we can query using the
terms, “High semantic level: method”, “Word: in”, and “Low semantic
level: group”; in other words, our retrieval method is more useful and
convenient than conventional Web retrieval.

1 Introduction

We developed an algorithm for quickly searching sequences of hierarchically
structured data.3 For example, in the Kyoto Text Corpus [1], each word has
information on its part of speech (POS) and minor POS and the word itself.
(A minor POS is a more specific POS.) The POS, minor POS, and word can
be considered data of the highest layer, the second-highest layer, and the low-
est layer. Hierarchically structured data, as explained below, has data from the
lowest to the highest layers. The Kyoto Text Corpus has such a structure, so it
can be considered to be sequences of hierarchically structured data. The algo-
rithm we propose is for quickly searching sequences of such data. Our algorithm

3 We obtained a Japanese patent for the algorithm.

© A. Gelbukh (Editor)
Advances in Natural Language Processing
Research in Computing Science 18, 2006 pp. 163-174

164 Murata M., Utiyama M., Kanamaru T. and Isahara H.

Table 1. Example of sequences of hierarchically structured data.

Word Minor POS | POS
The definite article|article
technology|common noun |noun
in preposition particle
Japan proper noun [noun
is copula verb

can be used not only for the Kyoto Text Corpus, but also for any sequences of
hierarchically structured data.

An application of our algorithm is to search sequences of hierarchically struc-
tured data, such as a tagged corpus where each word includes information on its
POS and minor POS and the word itself, as mentioned above. Our algorithm is
useful for quickly searching a natural language processing system that uses such
a tagged corpus. Linguists or users (i.e., learners) that would like to use linguis-
tic information would want to quickly search the database using grammatical
information such as POSs as mentioned above. Our algorithm is also useful for
this case. Our method can be used for other kinds of hierarchically structured
data, such as Web applications. Methods that can be used on such data are in
high demand. For example, our method can be used to retrieve Web text that
includes hierarchical information of low, middle, and high semantic levels. If we
use our method for such Web text, we can query using the terms, “Higher se-
mantic level: method”, “Word: in”, and “Low semantic level: group”; in other
words, our retrieval method is more useful and convenient than conventional
Web retrieval.

2 Algorithm

2.1 How to store data in a database

In our algorithin, we use suffix arrays [2] for retrieval. We can perform fast
searches by storing data in a database in a special form.

Data are stored in the following form. In our algorithm, we first create a data
item where each data item in a lower level is surrounded by a pair of higher-level
data items. We then connect these data items to make a long string and store the
string in a database. We make indexes for fast searches by using suffix arrays.

For example, assuming that we were going to store the sentence in Table 1 in a
database, we would first transform the word “The” into the appropriate form for
the database. For this data item, the lowest level data is “The”, and the second
lowest data level is “definite article”, so we put “definite article” on both sides of
“The” and obtain the expression “definite article:The:definite article”. We use
“:" as a boundary between the data items. The third lowest data item is “article”,
so we put “article” on both sides of “definite article:The:definite article” and

Fast Search Algorithm for Sequences of Hierarchically Structured Data 165

obtain the expression, “article:definite article:The:definite article:article”. This
is the complete expression for the data item “The” stored in the database. We

transform the words “technology”, “in”, “Japan”, and “is” in the same way and
obtain the following string.

/article:definite article:The:definite article:article/
noun:common noun:technology:common noun:noun/
particle:preposition:in:preposition:particle/
noun:proper noun:Japan:proper noun:noun,/
verb:copula:is:copula:verb/

We store this string in a database with a “/” between expressions. Above, the
string is separated into words, and each expression is on a separate line for easy

viewing. However, in the database, we do not separate the expressions. Instead,
we connect them into strings.

2.2 Method of retrieval

When we query the database, we transform the query into a string as explained
above because the database is constructed from hierarchically structured data.
However, we transform data items at the beginning and end of a query in different
ways. Data items at the beginning of a query are put in order from the lowest
layer to highest. Data items at the end of a query are put in order from the
highest layer to lowest.

For example, assume that we make the following query.

common noun, noun
in, preposition, particle
proper noun, noun

That is, the POS of the first word in the query is noun, and its minor POS is
common noun; the second word is “in”, its POS is particle, and its minor POS
is preposition; the POS of the third word is noun, and its minor POS is proper
noun.

In this case, the data item at the beginning of the query is transformed to
“common noun:noun/” in order from the lowest layer to highest. The data item
in the middle of the query is transformed to “particle:preposition:in:preposition:
particle/”, where each data item in a lower level is surrounded by a pair of
higher-level data items. The data item at the end of the query is transformed to
“noun:proper noun” in order from the highest layer to lowest. As a result, we
construct the following string from the query.

common noun:noun/
particle:preposition:in:preposition:particle/
noun:proper noun

166 Murata M., Utivama M., Kanamaru T. and Isahara H.

We scarch for this string in a database by using a suffix array.

Suffix arrays arc known broadly as algorithms for quickly scarching for a
substring in a string. The algorithm has log(n) steps when the length of the
string is n.

Our algorithm can search for a complicated hierarchically structured datum
by searching only once using a suffix array.

Although we showed the case where the query is a sequence of three data
items (words) and three layers are used for a hierarchical structure, our method
can handle sequences of more than three items and more than three layers.

Now, we assume that we query the following.

common noun, noun
particle

That is, the first word’s POS is noun, its minor POS is common noun, and the
second word’s POS is particle. In this case, the data item for the first word is
transformed into “common noun:noun” in order from the lowest layer to highest.
The data item for the second word is transformed into “particle” in order from
the highest layer to lowest. The transformed query is as follows:

common noun:noun/particle

In this case, too, our algorithm can search for a hierarchically structured datum
by searching only once using a suffix array.

2.3 Supplement

In our algorithm, higher-level data items are put on both sides of lower-level
data items. If we adopt another method where higher-level data items are put
on one side of lower-level data items, our algorithm cannot be used to search.
For example, when we adopt the wrong method, the data in Table 1 is stored as
follows.

/The:definite article:article/
technology:common noun:noun/
in:preposition:particle/
Japan:proper noun:noun/
is:copula:verb/

In this case, the query that the first word’s POS is noun, its minor POS is
common noun, and the second word’s POS is particle as in the following cannot
be retrieved using a single scarch with a suffix array.

common noun:noun

particle

This is because an obstructive string, “in:preposition:”, is between “common
noun:noun” and “particle”, and a query cannot be expressed with an unsplit
string. Instead, in our algorithm, the data sequence is stored as follows.

Fast Search Algorithm for Sequences of Hierarchically Structured Data 167

/article:definite article:The:definite article:article/
noun:common noun:technology:common noun:noun/
particle:preposition:in:preposition:particle/
noun:proper noun:Japan:proper noun:noun/
verb:copula:is:copula:verb/

In this case, what separates “common noun:noun” and “particle” is a separation
symbol, “/”, only. Therefore, when we would like to search the following query,
we make the transformed query, “common noun:noun/particle”.

common noun:noun
particle

We can make the query by searching only once using a suffix array.

2.4 Notice for the algorithm

In our algorithm, a data sequence that can be searched for using a one-time
retrieval must fulfill the following conditions: The data items in the middle of
the query must have data for all the layers, from the lowest to highest, and the
data items at the beginning or end of the query must have data for all the layers
that are higher than a certain layer. A data sequence must consist of consecutive
items, so in a data sequence, there must not be gaps. A data sequence that does
not satisfy the above conditions cannot be expressed with a connective string
and cannot be searched for using one-time retrieval.

For example, the query specifying that the first word’s minor POS is common
noun and the second word’s POS is particle, as follows, cannot be searched for
using one-time retrieval.

common noun
particle

A string in the database is as follows.

noun:common noun:technology:common noun:noun/
particle:preposition:in:preposition:particle/

The word “noun” is between “common noun” and “particle”. Therefore, the
query cannot be expressed with a connective string and cannot be searched for
using one-time retrieval.

To solve the problem, we should use our knowledge of hierarchically struc-
tured data and complement data items in higher layers before making the query.
For example, the data item in the layer above “common noun” is “noun”. There-
fore, when the query is the following,

common noun
particle,

168 Murata M., Utiyama M., Kanamaru T. and Isahara H.

Table 2. Average retrieval time.

Retrieval time Retrieval time| Ratio of
in conventional method|in our method|retrieval time
0.410 s 0.017 s 24.3

“noun” is the complement of “common noun”?, so we assume that the query is
the following.

common noun, noun
particle

The transformed query is “common noun:noun/particle”, and we can make the
query by using a one-time retrieval.

3 Experiments

Our algorithm is very fast because it uses suffix arrays, a fast scarch algorithin,
only once. We experimented to determine by how much our algorithm is faster
than a conventional method. In the experiments, we used our algorithm and the
following conventional method.

In the conventional method, we first divide a query into two parts. We next
search for the first part of the query using a suffix array. We then check whether
each result of the first search has the second part of the query and output the
results having the second part of the query as the final retrieval results.

We used Sun UE420R (450 MHz) systems as the computers for the experi-
ments. We used C to program them.

We used the Kyoto Text Corpus Version 2.0 1] (which has about 20,000
Japanese tagged sentences) as a database. We used the POS information as the
data in the highest layer, the minor POS information as the data in the middle
layer, and the word information as the data in the lowest layer. For example, in
the data item “technology, common noun, noun”, “noun” is treated as the data
item in the highest layer, “common noun” is treated as the data item in the
middle layer, and “technology” is treated as the data item in the lowest layer.

The experimental results are shown in Tables 2 to 4. In the experiments,
we used the 24 expressions shown in the first column of Table 3 as the first
parts of our queries and used the 51 expressions shown in the first column of
Table 4 as the second parts. We made 1224 (= 24 x 51) queries by making
all the combinations of the first and second parts and used the queries for the
experiments. In our method, we connect the first and second parts of a query

* In some cases, a data item in a lower layer has plural data items in a higher layer. In
such a case, we have to make queries using all the data items and make OR retrieval
using the queries, have the user select one of the data items and make the retrieval
using the query made using it, or use word sense disambiguation techniques to select
an appropriate data item and make the retrieval using a query made using it.

Fast Search Algorithm for Sequences of Hierarchically Structured Data 169

Table 3. Retrieval time for first part of query.’

First part of query Number ’Z‘ime (s)[Time Ss) Ra?io
ol items|(conven-| (our [¢]

output | tional) |method)| time

verb 48692 11231 0.017] 65.
adjective 11213 0.274 0.018| 15.5
prefix 31501 0.082| 0.017| 4.7
adnoun 532 0.025 0.016] 1.5
pronoun 4513 0.120 0.017] 7.1
noun 178487| 3.955| 0.020]194.0
verbal noun:noun 45110 1.103 0.019| 58.6
common noun:noun 87130 2.085 0.017|120.8
formal noun:noun 4704 0.130 0.015| 8.5
person name:noun 6845 0.172 0.015| 11.7
location name:noun 10196 0.257 0.016] 16.0
organization name:noun 3249 0.091 0.019] 4.9
proper noun:noun 97 . 0.020{ 0.018| 1.1
prime minister:common noun:noun 4471 0.030{ 0.018] 1.7
goverment:common noun:noun 529 0.033| 0.019] 1.7
expectation:verbal noun:noun 152 0.018] 0.016] 1.1
hito (human):common noun:noun 542| 0.030 0.015| 2.0
Murayama:person name:noun 232 0.021 0.016| 1.3
Tokyo:location name:noun 390 0.023 0.014| 1.7
mono (thing):formal noun:noun 681 0.035| 0.017] 2.0
koto (matter):formal noun:noun 2255 0.088| 0.019| 4.7
no (thing):formal noun: noun 1350 0.061 0.015| 4.1
omou (think)::verb 120 0.020f 0.015| 1.4
aru (exist)::verb 1228| 0.054] 0.018] 3.0

into one string and search for it in a database. Using the conventional method,
we first search for the first part of a query in a database and check whether each
result of the first search has the second part of the query. We then output the
results having the second part of the query as the final retrieval results.

Table 2 shows the average retrieval times for the conventional method and our
method and the ratio of the average retrieval time of the conventional method
to that of our method. Our method is very fast (0.017 s), and the conventional
method is slower (0.410 s). Our method is 24 times faster than the conventional
method. This indicates that our method is effective.

Table 3 shows the average retrieval time for the queries where the first part
of the query is the corresponding first part in the first column of the table and
the second part is any of the second parts from Table 4. Table 4 shows the
average retrieval time for the queries where the second part of the query is the
corresponding second part in the first column of the table and the first part i.s
any of the first parts from Table 3. In the tables, “Number of items output”
indicates the number of items output using only the first or second part of the
query. (That is, “Number of items output” indicates the number of expressions
matching the first or second part of the query.) “Time (conventional)” indicate.s
the average retrieval time for the conventional method. “Time (our‘ metl.lod)'
indicates the average retrieval time for our method. “Ratio of time” indicates

170

Murata M., Utivama M., Kanamaru T. and Isahara H.

Table 4. Retrieval time for second part of query.

Second part of query oNfuir&t;gg ’&l(r)rrllev egﬂ Tl(gSrSS) Rg?no

output | tional) |method)| time

verb 48692 0.396 0.015] 27.2
aux. verb 4074 0.417 0.018| 23.3
adjective 11213 0.406 0.015| 26.4
postfix 37322| 0.420| 0.020| 20.6
copula 4616 0.403 0.018| 22.5
noun 178487 0.408 0.020(20.4
noun:verbal noun 45110| 0.400 0.016] 24.6
noun:common noun 87130 0.425 0.018| 24.3
noun:formal noun 4704 0.407 0.015(27.1
noun:person name 6845 0.425 0.014| 30.9
noun:location noun 10196 0.405 0.017| 23.7
noun:organization noun 3249 0.420 0.017| 25.2
noun:proper noun 97 0.392 0.018| 21.4
particle 125877| 0.417| 0.022| 18.5
particle:case particle 68951 0.410 0.018| 22.3
particle:postfix particle 860 0.422 0.015| 27.4
particle:sub particle 24565 0.394 0.019| 21.0
particle:connective particle 31501 0.410 0.020| 20.9
particle:case particle:kara (from) 2286 0.419 0.017| 24.5
particle:case particle:ga (sub.) 12240 0.404 0.014| 28.5
particle:case particle:de (in) 6901 0.400 0.014(29.1
particle:case particle:to (with) 11248 0.402 0.021| 18.9
particle:case particle:ni (to) 15697| 0.416 0.018(23.8
particle:case particle:no (sub.) 1601 0.421 0.018]| 24.1
particle:case particle:ha (sub.) 1| 0.394| 0.015] 25.5
particle:case particle:he (to) 883| 0.426 0.018| 23.3
particle:case particle:made (to) 795 0.395 0.016(24.9
particle:case particle:yori (from) 232 0.426 0.020| 20.9
particle:case particle:wo (obj.) 17064 0.411 0.016{ 25.3
particle:postfix particle:ka 699 0.407 0.013| 31.5
particle:postfix particle:ne 47 0.405 0.019(21.6
particle:postfix particle:yo 41 0.406 0.019| 21.2
particle:postfix particle:wa 4 0.407 0.017| 24.4
particle:sub particle:kurai (about) 19| 0.412 0.014| 29.9
particle:sub particle:gurai (about) 17 0.422 0.022| 19.5
particle:sub particle:koso (even) 87| 0.417[0.016| 26.3
particle:sub particle:sae (even) 52 0.403 0.015| 27.7
particle:sub particle:shika (only) 127| 0.404 0.015(26.9
particle:sub particle:sura (even) 41 0.404 0.015(27.7
particle:sub particle:dake (only) 580| 0.415 0.016| 25.5
particle:sub particle:datte (even) 11 0.417 0.016| 25.7
particle:sub particle:demo (even) 482| 0.407 0.017(24.4
particle:sub particle:nado (etc.) 1555 0.417| 0.018| 23.3
particle:sub particle:nomi (only) 24 0.412 0.018| 23.5
particle:sub particle:bakari (only) 49 0.408 0.016| 25.1
particle:sub particle:made (also) 6] 0.408/ 0.015| 26.5
particle:sub particle:mo (also) 4663| 0.422| 0.016| 26.6
particle:connective particle:to (and) 15| 0.417 0.013| 32.3
particle:connective particle:no (of) 25739 0.400 0.015| 25.9
particle:connective particle:ya (or) 1530 0.409 0.019| 21.8
particle:connective particle:mo (too) 7| 0.419] 0.017] 24.5

Fast Search Algorithm for Sequences of Hierarchically Structured Data 171

the ratio of the average retrieval time of the conventional method to that of our
method.

From Table 3, we found that when the number of items output using the first
part of a query is larger, the time ratio of the conventional method to that of our
method is also larger. That is, when the number of items output using the first
part of a query is large, the conventional method needs much more time than
our method for retrieval. For example, when the first part of a query is “noun”,
the number of items output is very large (178487). Therefore, the conventional
method needs 4 s. On the other hand, our method is very fast (0.020 s). The
ratio of time is 194, so our method is 194 times faster than the conventional
method. This indicates that our method is effective.

On the other hand, when the number of items output using the first part of
a query is small, the ratio of time is not so large. For example, when the first
part of a query is “proper noun:noun”, the number of items output is small (97).
In this case, the retrieval times of the conventional method and our method are
0.020 and 0.018 s and are very similar.

Next, let us examine the results for the second parts of the queries using
Table 4. In this case, the conventional method needs almost the same time for
each query. We found that the retrieval time of the conventional method does
not depend on the second part of a query.

For a more detailed examination, we used the results in Tables 3 and 4 to
graph the relationships between the number of items output and retrieval time
of the conventional method, between the number of items output and retrieval
time of our method, and between the retrieval time of the conventional method
and that of our method. The graphs are shown in Figure 1.

Using Figure 1(al), we found that the retrieval time of the conventional
method is roughly proportional to the number of items output using the first
part of a query. The reason is that the conventional method has to check whether
each result in the first search has the second part of the query.

Next, using Figure 1(a2), we can see that the retrieval time of the conven-
tional method does not depend on the number of items output using the second
part of a query. The reason is that the conventional method has to check whether
each result in the first search has the second part of the query, and the retrieval
time does not depend on the number of data items in a database corresponding
to the second part of the query.

Using Figures 1(bl) and 1(b2), we can see that the retrieval time of our
method is slightly longer when the number of items output using the first or
second part of a query is larger.

Next, we examined the ratio of the retrieval time of the conventional method
to that of our method using Figures 1(cl) and 1(c2). Because the ratio is the
retrieval time of the conventional method divided by that of our method, the
values in Figures 1(al) and 1(a2) divided by the values in Figures 1(bl) and
1(b2) are the values in Figures 1(cl) and 1(c2). Because the values in Figure
1(al), which form a straight line from the lower left side to the upper right side.
are divided by the values in Figure 1(b1), which form a straight line tilted down

172 Murata M., Utivama M., Kanamaru T. and Isahara H.

0.7
os

Zos
Eo.?-_ . .
o3t
*
302
L3

0.1

~
-

o

~
R R RS

N

N

Retrieval ime (3)

o

= °
50000 100000 150000 200000 [50000 100000 150000 200000
Number of outputs using first part of & query Number of outputs using second part of a query

I
(al) Time of conventional method. (a2) Time of conventional method.

| 1
| oo0s |
‘ |

o
°
*

o
°
2

o
8
S

Retrisval ime (s
°
°
2

Retrieval time (3}
°
°
=

°
2

[

50000 100000 150000 200000 o 50000 100000 150000 200000
Number of outputs using second part of a query

o
°

Number of outputs using first part of a query

(b1) Time of our method. (b2) Time of our method.

e —

250 | 50

~
9
3

. .

| §10 £30

1% . %

! .“: 100 320

| € / &

| o 10

! 0 o

| 0 50000 100000 150000 200000 ° 50000 100000 150000 200000

| Number of cutputs using first part of a query Number of ouputs using second part of a query
(c1) Ratio of time. (c2) Ratio of time.

Fig. 1. Retrieval times for first or second part of query.

slightly on the left, the values in Figure 1(c1) go up to the right but curve down
slightly compared to a straight line. Because the values in Figure 1(a2), which
form a straight line from left to right, are divided by the values in Figure 1(h2),
which form a line going down slightly to the left, the values in Figure 1(c2) go
down slightly to the right.

From these results, we found that our method is especially effective when the
number of items output using the first part of a retrieval is large. We also found
that when the number of items output using the second part of a retrieval is
small, the speed of our method is slightly reduced, and the difference between
the speeds of our method and the conventional method is slightly smaller.

In the conventional method described above, we always used the first part of 2
query first and checked whether each result of the first search had the second part
of the query to more easily analyze experimental results. However, in general,
we first determine whether the first or second part of a query has the smaller

Fast Search Algorithm for Sequences of Hierarchically Structured Data 173

Table 5. Average retrieval time

Retrieval time Retrieval time| Ratio of
of conventional method 2|of our method |retrieval time
0.112 s 0.017 s 6.65

Table 6. Example of data sequence that includes semantic information.

Word [Semantic Level 2[Semantic Level 1
The None None
technology[Method Abstraction
in None None
Japan Country Group
is None None

number of items to output, then use the part with the smaller number for the
first retrieval, and check whether each result in the retrieval has the other part of
the query. This is because when the number of the outputs in the first retrieval
is smaller, the conventional method is faster. Therefore, we experimented using
this method. We call it conventional method 2. The results are shown in Table
5. The retrieval time of conventional method 2 is 0.112 s, which is faster than
the conventional method (0.410 s). However, the retrieval time of conventional
method 2 is 6.2 times slower than that of our method.

We can use SQL to handle hierarchically structured data, so we experimented
using it. However, when we used MySQL, we needed a few seconds to search for
only one word®, and we needed a few minutes to a few hours to search for a
combination of two words®. Therefore, our method is much faster at retrieving
one word (100 times faster than the method using SQL; our method needs 0.02
s, and the method using SQL needs a few seconds) and even faster at retrieving
a pair of words (6000 to 360000 times faster than the method using SQL; our
method needs 0.02 s, and the method using SQL needs a few minutes or a few
hours) than the method using SQL.

4 Application

Our algorithm can be used not only for the Kyoto Text Corpus, but also for any
sequences of hierarchically structured data.

For example, our method can be used for data sequences using the semantic
information of a hierarchical thesaurus such as in Table 6. In this case, the data
sequence in the table is transformed into the following string to store it in a
database.
® The retrieval time for “noun” was 3.59 s.

% The retrieval time of the pair “noun:common noun” and “de (in):particle” was 3.5
hours.

174 Murata M., Utiyama M., Kanamaru T. and Isahara H.

/None:None:The:None:None/
Abstract.ion:Method:technology:Method:Abst.raction/
None:None:in:None:None/
Group:Count'ry:Japan:Country:Group/
None:None:is:None:None/

In the data, we can retrieve a query using the terms, “Semantic level 2: Method”,
“Word: in”, and “Semantic level 1: Group”; that is, we can retrieve the semantic
query of “Method in Group”. In this case, we complement the query with some
data items using our knowledge of hierarchical thesauruses such as WordNet (3]
and make the string “Method: Abstraction/None:None:in:None:None/Group”.
By using this string, we can make the query using a one-time retrieval.

5 Conclusion

We developed an algorithm for quickly searching sequences of hierarchically
structured data, such as a tagged corpus where each word includes information
on its part of speech (POS) and minor POS and the word itself. To determine
the offectiveness of our method, we experimented to compare the retrieval time
of our method with that of a conventional method. The conventional method
was the method dividing the query into two parts, making the first retrieval
using one of the two parts, and checking whether each of the results in the first
retrieval included the other part or not. The experimental results showed that
our method was 194 times faster than the conventional method at fastest and
24 times faster on average. We also found that our method is especially effective
when the number of items output using the first retrieval is large.

Our algorithm can be used for other kinds of sequences of hierarchically
structured data. We showed sequences of hierarchically structured data where
each word has a higher semantic label and a lower semantic label and described
how to transform a sequence of such data into a string to store the data in a
database.

Our technique for putting semantic information into text can be used for
Web text. Our method can therefore be used for Web retrieval, which is in
high demand. If we use our method for Web text, we can query using the terms,
“Semantic level 2: Method”, “Word: in”, and “Semantic level 1: Group”; in other
words, our retrieval method is more useful and convenient than conventional Web
retrieval.

References

1. Sadao Kurohashi. Kyoto Text Corpus Version 2.0. 1998. (in Japanese).

2. U. Manber and G. Myers. Suffix Arrays: a newmethod for on-line string searches.
SIAM Journal on Computing, 22(5):935-948, 1993.

3. Princeton University. WordNet 2.0. 2003.

